投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

用于柔性和可印刷电子产品的石墨烯增材制造

来源:北京印刷学院学报 【在线投稿】 栏目:综合新闻 时间:2021-07-09
作者:网站采编
关键词:
摘要:江苏激光联盟导读: 来自堪萨斯州立大学工业与制造系统工程系的助理教授 Suprem Das 与物理学教授 Christopher Sorensen 领导的研究展示了制造基于石墨烯的纳米墨水的潜在方法,用于灵活

江苏激光联盟导读:

来自堪萨斯州立大学工业与制造系统工程系的助理教授 Suprem Das 与物理学教授 Christopher Sorensen 领导的研究展示了制造基于石墨烯的纳米墨水的潜在方法,用于灵活且可印刷的超级电容器的增材制造。

▲图形摘要

多年来,石墨烯的兴起改变了我们对基础物理学和新应用出现的理解。近年来的两个重大进步特别值得注意。首先,随着石墨烯处于领先地位,关于使范德瓦尔斯固体拆解大量固体的新方法的提议产生了一系列二维材料(通常称为 2D 材料)。第二个是一种新兴的基于墨水的技术,可带来经济且可扩展的制造平台,例如印刷电子。尽管基于墨水的石墨烯研究尚处于起步阶段,但由于已经存在印刷电子市场,但随着印刷电子产品市场的形成,预计它将对可穿戴电子产品、无线通信以及从医疗诊断设备到储能设备等新兴技术产生重大影响。此外,这些设备可以共同构建基于石墨烯和后石墨烯的物联网平台。基于墨水的配方进一步与全球范围内在新型功能性和新兴材料的可扩展制造方面的努力保持一致。随着对便携式和轻型物联网设备不断增长的需求,需要尺寸兼容的集成电源,传统的储能设备将不会由于其庞大的结构而符合标准。因此,微型储能组件,例如可充电微电池和微型超级电容器,在印刷电子研究中具有关键作用和机会。为了实现未来高性能电动汽车 (electric vehicles, EVs) 甚至电网级储能系统的目标,集成电化学电容器或超级电容器 系统由于其快速充电时间和不断增加的能量密度,可以与锂离子电池(lithium ion batteries, LIBs) 形成互补单元。锂离子电池具有缓慢的扩散控制动力学和长时间充电,以及电池化学方面的局限性,例如嵌入过程导致的结构不稳定性。快速充电储能机制通过离子的物理吸附形成双电层,不仅延长了 SCs 的寿命,而且还可以通过增加表面与体积比在微/纳米尺度上进行设计,从而存储更多的能量。

用于各种应用(例如储能设备)的石墨烯基材料 (graphene-based materials, GBM) 的增材制造在过去几年中显示出巨大的前景,这主要是由于其易于复杂的设备制造,包括在柔性和可弯曲平台中,以及不需要昂贵的硅加工的经济考虑。尽管3D打印电池和超级电容器出现在最近报道的大部分研究,但通常,这些研究的目标是大规模设备制造以存储更多能量。同时,也很少探索其他印刷技术,例如更适合微型设备的丝网印刷、凹版印刷、喷墨印刷和气溶胶喷射印刷,主要针对物联网应用。而丝网印刷主要用于毫米级或较低分辨率的印刷材料和设备,后三种印刷技术最近正在推动用于各种传感器和能量存储设备的增材制造石墨烯设备的界限。尽管近年来在石墨烯或相关碳材料的喷墨印刷超级电容器方面取得了重大进展,但纳米级结构工程和使用安全方法可扩展制造 GBM 的重要性越来越高。

通过纳米工程实现可靠和更高电容性能量存储的潜在途径通过开发新的基于墨水的化学物质来构建墨水形式的石墨烯基本构件仍然是重要途径之一。众所周知,包括石墨烯气凝胶在内的碳基气凝胶重量更轻,并且由于其多孔结构可以储存更多能量,从而导致高表面积和更高的双层电容,但主要用于3D打印超级电容器,不能满足以下要求柔性电子/设备。气溶胶凝胶与气凝胶根本不同,这并不为人所知。当允许固体颗粒气溶胶聚集直至形成体积跨越凝胶时,气溶胶凝胶在气相中形成。气凝胶也通过聚集成体积跨越凝胶而形成,但另一方面,凝胶化发生在液相中来自不稳定的胶体。在气相中由气溶胶形成凝胶的优点是可以产生更高纯度的凝胶,因为与胶体不同,它没有溶剂、反离子或去稳定剂。此外,由于它们起源于气相,因此不需要干燥凝胶,这对于气凝胶通常需要复杂的干燥过程,如超临界干燥。在该研究中,研究人员报告了一种可扩展的石墨烯气溶胶凝胶纳米墨水合成,该石墨烯气溶胶凝胶是在氧气存在下通过乙炔作为碳氢化合物前体的受控爆轰方法生产的千克级石墨烯气溶胶凝胶。



上一篇:兼容多种标签打印,造型奢华续航强——汉印H
下一篇:标签打印软件如何制作外箱包装向上标志

北京印刷学院学报投稿 | 北京印刷学院学报编辑部| 北京印刷学院学报版面费 | 北京印刷学院学报论文发表 | 北京印刷学院学报最新目录
Copyright © 2018 《北京印刷学院学报》杂志社 版权所有
投稿电话: 投稿邮箱: